‡ŒvƒSƒEƒPƒC€–ڐ”ƒRƒEƒ‚ƒNƒXƒE(0.60, 300lƒjƒ“@‚QˆöŽqƒCƒ“ƒV) 5€–ځ{x€–Ú @
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
‡ŒvƒSƒEƒPƒC€–ڐ”ƒRƒEƒ‚ƒNƒXƒE @
@ 15 13 11 9 7 @ @ @ @ @ @ @ @
MAP-TEST[1] 0.75 0.70 0.6 0.45 0.00 0.75
RAW-EIGEN[2] 0.90 0.85 0.85 0.80 0.75 0.15
PA-EIG-M[3] 0.80 0.75 0.75 0.70 0.65 0.15
PA-EIG95[4] 0.75 0.75 0.7 0.65 0.60 0.15
SMC-EIGEN 1.00 1.00 1 1.00 0.95 0.05
PA-SMC-M[5] 0.85 0.85 0.85 0.85 0.80 0.05
PA-SMC-95[6] 0.85 0.85 0.8 0.80 0.75 0.10
CHI^2 0.75 0.75 0.75 0.75 0.75 0.00
AIC1[7] 0.90 0.90 0.9 0.85 0.85 0.05
BIC1[8] 0.80 0.75 0.75 0.75 0.70 0.10
CAIC1[9] 0.75 0.75 0.75 0.70 0.65 0.10
@ 15 13 11 9 7 @ 8.00 @ @ @ @ @ @
RMSEA[10] 0.65 0.70 0.7 0.70 0.75 -0.10
GFI[11] 0.65 0.65 0.6 0.50 0.05 0.60
AGFI[12] 0.75 0.70 0.7 0.65 0.60 0.15
RGFI[13] 0.60 0.55 0.5 0.40 0.00 0.60
RMSR[14] 0.65 0.65 0.65 0.65 0.60 0.05
NFI[15] 0.75 0.70 0.7 0.70 0.70 0.05
NNFI[16] 0.70 0.70 0.75 0.75 0.75 -0.05
CFI[17] 0.70 0.70 0.7 0.70 0.70 @ 0.00 @ @ @ @ @ @

[1]
Minimum Average Partial (MAP) test (Velicer,1976)
[2]
principle component anlaysis:Kaiser Šî€FŒÅ—L’l 1.0 ˆÈã
[3]
Parallel Analysis: Mean@(Horn, 1965)
[4]
Parallel Analysis: 95%
[5]
Parallel Analysis:SMC Mean
[6]
Parallel Analysis:SMC 95%
[7]
Akaike information criterion (Akaike, 1973,1987):: chi2 - 2 * ƒpƒ‰ƒ[ƒ^” ->Amos
[8]
Bayes information criterion (Schwarz,1978; Raftery, 1993):chi2 - Log(N) * ƒpƒ‰ƒ[ƒ^”
[9]
Consistent AIC (Bozdogan, 1987): Chi2-(1+Log(N))*ƒpƒ‰ƒ[ƒ^”
[10]
Root Mean Square Error of Approximation (Steiger and Lind, 1980).•êW’c
[11]
Goodness of Fit: LISREL
[12]
Adjusted Goodness of Fit:Ž©—R“x’²®Ï‚ÝGFI
[13]
Relative Goodness of Fit@FGFI/EGFI
[14]
Root Mean Square Residual
ƒ‚ƒfƒ‹ŠÔ‚Ì‘Š‘ΔäŠr—p
[15]
Bentler-Browne normed fit index: “Æ—§ƒ‚ƒfƒ‹‚ƃ‚ƒfƒ‹‚Ì”äŠr
[16]
Bentler-Browne non-normed fit index: Tucker-Lewis Index (TLI)‚Ì‚±‚Æ
[17]
Comparative Fit Index: Bentler(1990) RNI ‚Æ“¯‚¶